
MULTI-FORMALISM MODELLING AND MODEL EXECUTION

C. Hardebolle
cecile.hardebolle@supelec.fr

F. Boulanger
frederic.boulanger@supelec.fr

Supélec - Computer Science Department

3 rue Joliot-Curie, 91192 Gif-Sur-Yvette cedex, France

Keywords
Multi-formalism modelling, Heterogeneous modelling,
Model of computation, Simulation of heterogeneous
models, Model driven engineering.

Abstract
Modelling complex software systems requires multiple
modelling formalisms adapted to the nature of each part
of the system (control, signal processing, etc.), to the
aspect on which the model focuses (functionality, time,
fault tolerance, etc.) and to the level of abstraction at
which the system, or one of its parts, is studied. The use
of different modelling formalisms during the develop-
ment cycle is therefore both unavoidable and essential.
As a consequence, system designers deal with a large
variety of models that relate to a given system but do
not form a global model of this system. A major dif-
ficulty is then to answer questions about properties of
the whole system, and in particular about its behaviour.
Multi-Formalism Modelling allows the joint use of dif-
ferent modelling formalisms in a given model in order
to overcome issues related to the integration of hetero-
geneous models. It applies to different tasks of the de-
velopment cycle such as simulation, verification or test-
ing. We propose an approach to multi-formalism mod-
elling, called ModHel’X, which is based on the concept
of Model of Computation and focuses on the simula-
tion of models. Our approach addresses two important
issues in this particular field: (a) providing support for
the specification of the execution semantics of a mod-
elling formalism, and (b) allowing the specification of
the interactions between parts of a model described us-
ing different modelling formalisms.

1. Introduction
In the context of Model Driven Engineering (MDE),
the development of complex software systems calls for
different modelling techniques depending both on the
different phases of the development cycle (specifica-
tion, design, test, etc.) and on the different techni-
cal domains at stake in the designed system (control,

This work has been performed in the context of
the Usine Logicielle project

of the System@tic Paris Région Cluster
(www.usine-logicielle.org)

user interface, signal processing, etc.). In particular,
the analysis of specific aspects of a design (time, per-
formance, etc.) or the description of the system at dif-
ferent levels of abstraction (system level, algorithmic
level, register transfer level) requires the use of ad-
equate modelling languages [19]. The use of differ-
ent modelling formalisms during the development cy-
cle and for different parts of a system is therefore both
unavoidable and essential. As a consequence, system
designers have to deal with a large variety of mod-
els that relate to a given system but do not form a
global model of this system. As a manual task, the in-
tegration of heterogeneous models in order to obtain
a global view of the system is both tedious and er-
ror prone, not mentioning issues related to traceability
and maintenability when modifications have to be re-
ported on the integrated models. Answering questions
about properties of the whole system, and in particu-
lar about its behaviour [4], is therefore a major diffi-
culty. The objective of Multi-Formalism Modelling [3]
is to ease and automate the integration of heteroge-
neous models by allowing the joint use of different
modelling formalisms in a given model. With respect
to the development cycle, multi-formalism modelling
is a transverse discipline: it applies to different activ-
ities of the development cycle such as specification,
verification, code generation or testing. Different as-
pects of multi-formalism modelling (also called hetero-
geneous modelling) have been studied: mathematical
foundations [10], tools for validation [25] or simula-
tion [27]. A central problem is to establish the meaning
of the composition of heterogeneous parts of a model
and to ensure their correct interoperation when using
the model to answer questions about the designed sys-
tem [21]. In this paper, we describe an approach called
ModHel’X which addresses the issue of the composi-
tion of heterogeneous parts of a model in the context of
model execution.

The remainder of the paper is organized as follows.
We first motivate our approach in Section 2. Section 3
details the main principles of ModHel’X, which we il-
lustrate through an example in section 4. We discuss
some specific aspects of our approach in Section 5.
Then we review some of the related work in Section 6
before concluding.

Figure 1: The ModHel’X approach

2. Motivations

In the context of model execution, the first difficulty
when determining the semantics of a composition of
heterogeneous models is to have a precise executable
specification of the semantics of the involved modelling
formalisms. Indeed, except for a few mathematically
founded languages, the semantics of a modelling lan-
guage is often described using natural language, which
may lead to ambiguities and to diverse interpretations
by different tools along the design chain. When com-
bining different modelling languages in a model, ambi-
guities in the semantics of one of them make it impos-
sible to define the overall semantics of the model. In
this context, semantic variations as found in UML are
acceptable only if the variation used is explicitly stated.

A second difficulty for obtaining a meaningful multi-
formalism model of a system is to be able to define the
semantic adaptation (i.e. the “glue”) to use between
model parts that use different modelling formalisms.
An important constraint is that no model part should
be modified to become compatible with the other parts
of the multi-formalism model. This is particularly im-
portant when the model parts are provided by different
technical teams or by suppliers for instance. Another
constraint is that the semantic adjustment between het-
erogeneous parts of a model depend not only on the for-
malisms at stake but also on the system which is mod-
eled. Usual adaptation patterns between modelling for-
malisms often exist, but they are not unique and may
need parameter adjustments since they represent de-
fault adaptations which do not necessarily fit directly
a particular context. For example, integrating a model
part which focuses on the notion of time with another
which does not, may imply customizing the adaptation
which is realized on the notion of time so that it is co-
herent with the expected behaviour of the system.

An approach for specifying the semantics of a mod-
elling language is to define the constructs of the lan-
guage in a fixed abstract syntax – or meta-model –
which is component oriented (as in [31]), and to con-
sider that the semantics of the language is given by its
“Model of Computation” (MoC). Such an approach is
implemented in Ptolemy [4]. A model of computation
(called “domain” in Ptolemy) is a set of rules for in-
terpreting the relations between the components of a

model. In this approach, the meta-model is the same for
each language, and what defines the semantics of the
language is the way the elements of this meta-model are
interpreted by the corresponding MoC. Heterogeneous
models are organized into hierarchical layers, each one
involving only one MoC. Thanks to this architecture,
MoCs (i.e. modelling languages) are combined in pairs
at the boundary between two hierarchical levels. The
main drawback of the Ptolemy approach is that the way
MoCs are combined at a boundary between two hierar-
chical levels is fixed and coded into the Ptolemy kernel.
This implies that the modelers have either to rely on the
default adaptation performed by the tool, or to modify
the design of parts of their model (by adding adapta-
tion components) in order to obtain the behaviour they
expect.

In order to illustrate this last issue, let us con-
sider, for example, the model of a system which inte-
grates known traffic conditions when computing driv-
ing itineraries. This system is composed of an algo-
rithm which computes a route to the destination from
the current position of the car, and of a subsystem
which retrieves traffic information from a network. The
traffic information, when available, is used by the rout-
ing algorithm to minimize the duration of the trip. The
routing algorithm regularly receives the position of the
car and updates the route. A synchronous data-flow for-
malism (SDF Ptolemy domain) is particularly adapted
for modelling such signal processing systems. The
traffic information retrieving system is provided by a
supplier, who used a discrete events formalism (DE
Ptolemy domain) in order to model the response de-
lay of the network. Embedding the DE model directly
into the SDF model is not possible because SDF re-
quires immediate responses to inputs provided in flows
while, in DE, events can be produced at any time, not
necessarily synchronously (e.g. the traffic information
retrieving system produces data only when the network
answers its request). In Ptolemy II, the modeler will
have to modify the DE model by adding a sampler
component which will deliver data synchronously by
repeating the previous data sample when no new data
is available. The problems that arise with this approach
are the following:

• The altered model of the information retrieving
system no longer represents the behaviour of the

2

Figure 2: Generic meta-model for representing the structure of models

component which is delivered by the supplier.
This may lead to implementation incoherences at
the end of the development cycle.

• Since the semantic adaptation is done in the model
of the component, it is not protected from changes
made by the supplier.

• If the formalism used in one of the models changes
– e.g. when refining the model in order to take
finer details into account – the adaptation must be
expressed again in the new formalism. This is in-
compatible with modularity and reuse.

It is therefore important to allow the designers to
specify the semantic adaptation outside the models of
the parts they assemble.

The approach that we propose is based on the con-
cept of model of computation (MoC) as defined in [4].
Fig. 1 illustrates the structure of the ModHel’X frame-
work. In order to interpret a model in ModHel’X, it
is necessary to describe its structure using our MOF
meta-model. Then, we define an interpretation of the
elements of our meta-model which matches the seman-
tics of the original language. Such an interpretation is
what we call a Model of Computation. The interpre-
tation of a model according to a MoC gives the same
behaviour as the interpretation of the original model
according to the semantics of its modelling language.
The way MoCs are specified in ModHel’X is detailed
in section 3.4. Our MOF meta-model, which is inspired
by the abstract syntax of Ptolemy, contains special con-
structs for making the interactions between heteroge-
neous MoCs explicit and easy to define. The same
concepts used to define MoCs are used to define how
different MoCs are “glued” together in heterogeneous
models, at the boundary between two hierarchical lay-
ers. The execution engine of ModHel’X relies on the
executable specification of the models of computation
and of their interactions to determine without ambigu-
ity the behaviour of multi-formalism models.

3. The ModHel’X approach

3.1 Black boxes and snapshots
In ModHel’X, we adopt a component-oriented ap-
proach and we consider components as black boxes,
called blocks, in order to decouple the internal model
of a component from the model of the system in which

it is used. Therefore, the behaviour of a block is observ-
able only at its interface: nothing is known about what
is happening inside the block, and in particular whether
the block is computing something at a given moment.

In addition, instead of “triggering” the behaviour of
a block, we only observe its interface. When we need
to observe a block, we ask it to provide us with a co-
herent view of its interface at this moment. A block
can therefore be active even when we do not observe
it. This is a key point in our approach because it al-
lows us to embed asynchronous processes in a model
without synchronizing them: we simply observe them
at instants suitable for the embedding model. The be-
haviour of a block or a model is therefore a sequence
of observations. An observation of a model is defined
as the combination of the observations of its blocks ac-
cording to a MoC. This definition holds at all the levels
of a hierarchical model. The observation of the top-
level model, i.e. the model of the overall system, is a
snapshot [11] which defines the exact state of the inter-
face of each block at a given instant (such a notion is
also defined in the context of UML [38]). We detail the
way a snapshot is obtained using the rules expressed by
a MoC in Section 3.4.

3.2 Time

The notions of time used in different models of com-
putation are varied (real time, logical clocks, partial or-
der on signal samples, etc.), and ModHel’X must sup-
port all of them. Moreover, in an heterogeneous model,
different notions of time are combined and each part
of the model may have its own time stamp in a given
snapshot. Therefore, the succession of snapshots is the
only notion of time which is shared by all MoCs and
which is predefined in ModHel’X. On this sequence of
instants, each MoC can define its own notion of time.

A snapshot of a model is made whenever its environ-
ment (i.e. the input data) changes, but also as soon as
any block at any level of the hierarchy needs to be ob-
served, for instance because its state has changed. To
this end, each component of an heterogeneous model
can give constraints on its own time stamp at the next
snapshot. For instance, in a timed automaton, a time
out transition leaving the current state must be fired
even if no input is available. This can be achieved by
requiring, when entering this state, that the next snap-
shot occurs before the timeout expires. This feature is a
major departure from the Ptolemy approach, where the

3

Figure 3: Generic execution algorithm
Figure 4: Update on an interface block and

its internal model

root model drives the execution of the other layers of
the hierarchy.

Times in two MoCs may be synchronized by the in-
teraction pattern at the boundary of two hierarchical
levels. Thus, time constraints can propagate through
the hierarchy up to the top level model.

3.3 Generic MOF meta-model for
representing the structure of models

The generic meta-model that we propose, shown on
Fig. 2, defines abstract concepts for representing the
structural elements of models. Each of these concepts
can be specialized in order to represent notions that are
specific to a given modelling language, but their seman-
tics is given by the MoCs which interprets them.

In the structure of a model, blocks are the basic units
of behaviour. Pins define the interface of models and
blocks. The interactions between blocks are repre-
sented by relations between their pins. Relations are
unidirectional and do not have any behaviour: they are
interpreted according to the MoC in order to determine
how to combine the behaviours of the blocks they con-
nect. For instance, a relation can represent a causal or-
der between two blocks as well as a communication
channel. It is important to note that similar concepts
can be found in many modelling approaches, in par-
ticular in component-oriented ones (such as Ptolemy II
for instance).

In ModHel’X, data is represented by tokens. The
concept of token can be specialized for each model of
computation. For instance, in a discrete event model,
tokens may have a value and a time-stamp, while in a
data-flow model, they only carry a value. The type of
the value which is carried by a token is not taken into
account by the MoC, which is only in charge of deliv-
ering the tokens by interpreting the relations between
the blocks.

The behaviour of a block can be described either us-
ing a formalism which is external to our framework
(for instance in C or Java), yielding an atomic block,
or by a ModHel’X model. To handle the latter case,
we have introduced a special type of block called an
interface block, which implements hierarchical hetero-

geneity: the internal model of an interface block may
obey a MoC which is different from the MoC of the
model in which the block is used. Interface blocks are a
key notion in our framework since they are in charge of
adapting the semantics of their inner and outer models
of computation. They allow the explicit specification
of the interactions between different MoCs.

3.4 Describing models of computation
and their interactions

Computing a snapshot of an heterogeneous model re-
quires to compute the observation of all its parts, which
may use different MoCs i.e. different notions of time,
control or data. The issue of the consistency of such an
observation is similar to the definition of the state of a
distributed system [11]. In ModHel’X, we have chosen
to define a model of computation as an algorithm for
computing observations of the model to which it is as-
sociated. For each observation, the algorithm asks the
blocks of the model to update the state of their inter-
face. The results of the update (output data) are prop-
agated to other blocks by propagation operations. We
want our execution engine to be deterministic, there-
fore we observe the blocks sequentially. To ensure the
consistency of the computed behaviour with the con-
trol and concurrency notions of the original model, the
MoC must include scheduling operations which deter-
mine the order in which to update the blocks.

3.4.1 Overall structure of the algorithm

Fig. 3 represents the generic structure of our algorithm.
This structure is a fixed frame which “standardizes” the
way MoCs can be expressed in ModHel’X, but the con-
tents of its elements is left free. Therefore, for each
MoC, the semantics of the operations of this algorithm
has to be described, using an imperative syntax, in or-
der to define the scheduling and propagation “policies”
specific to the MoC (non necessary operations can be
left empty). The left part of the figure shows the loop
which computes the succession of snapshots in the ex-
ecution of the model. In the computation of a snap-
shot, the computation of an observation of one block

4

Figure 5: Global model of the coffee machine and coffee machine automaton

brings into play the scheduling and propagation op-
erations mentioned above, and is called a step (rep-
resented on the right part of Fig. 3 under the name
computeOneStep). The algorithm loops on succes-
sive steps until the snapshot is entirely determined (i.e.,
for most MoCs, when the state of all the outputs of the
executed model is known). A given block may be up-
dated several times in this loop, which allows the use of
non-strict [18] blocks for the computation of fixed point
behaviours. Therefore, ModHel’X supports MoCs in
which cyclic dependencies are allowed.

3.4.2 Computation of one step in a snapshot

The basic sequence for performing a computation
step is to choose a component according to the
state of the model and the available inputs (init-
Schedule), propagate input data to this component
(prePropagate), then choose a component to ob-
serve (preSchedule), ask it to update its interface
(update), choose a component according to the state
of the model and the data produced during the up-
date (interSchedule), propagate the data accord-
ing to the chosen component (postPropagate), and
finally, chose a component according to the data which
has just been propagated (postSchedule). This se-
quence is built so that a component may be scheduled
as soon as something new happens in the model (new
inputs, new outputs, propagation of data), and the prop-
agation of data may depend on which component is
scheduled.

The scheduling operations of a model of computa-
tion are responsible for ensuring the causality of the
observations. They are used both for choosing the com-
ponent to which data will be routed and for choosing
the component which will be observed next. The or-
der in which the components of a model are observed
may influence the result of the observation. For in-
stance, if the outputs of component B depend on the
outputs of component A, but B is observed before A,
B won’t be able to take the outputs of A into ac-
count and won’t produce the same outputs as if it were
observed after A. Scheduling operations are therefore
among the most important operations in the description
of a model of computation. When implementing mod-
els of computation in which components run concur-
rently, the scheduling operations model the nature of

the concurrency and the synchronization mechanisms
of the model of computation. Since the execution en-
gine invokes the operations sequentially, the computa-
tion of a snapshot is deterministic. However, it is al-
ways possible to call non-deterministic functions like
random in the scheduling operations in order to model
non-deterministic models of computation. Such MoCs
may be useful for simulating a system, but may not be
appropriate for more formal applications such as test-
ing, model checking or validation. An example of a
scheduling operation is shown on Listing 1 page 6.

3.4.3 Hierarchical execution

The execution of a model traverses the hierarchy thanks
to the delegation of the operations of interface blocks
to their internal model. Snapshots are realized only at
the top level, which represents the whole system. A
model which is embedded into an interface block is
only asked to provide a coherent view of its behaviour
when its interface block is updated. The update op-
erations of interface blocks and models are shown on
Fig. 4. The adaptIn and adaptOut operations of
an interface block allow the modeler to specify explic-
itly how the semantics of the internal and the external
MoCs are adapted before and after the update of its in-
ternal model. Therefore, these operations represent the
meaning the modeler gives to the joint use of two mod-
els of computation.

In adaptIn, data from the external model is in-
terpreted and translated into the formalism of the in-
ternal model. This may include more than changing
the representation of data. For instance, if the internal
model expects that two of its inputs are always avail-
able simultaneously, adaptIn may store the first oc-
currence of one of these inputs and wait for the second
before delivering the two inputs to the internal model.
On the contrary, if two inputs are exclusive, adaptIn
may be used to deliver them to the internal model in
two separate snapshots if they happen simultaneously
in the external model. adaptIn can therefore change
the data that is passed to the internal model, but it can
also change the control, e.g. define when the internal
model will be able to react to new data. The last point
which is controlled by adaptIn is time. Since each
model of computation may have its own notion of time,
adaptIn can be used to compute the time stamp of the

5

Listing 1: initSchedule operation of the DE MoC

DEMoC::initSchedule(m:Model){ // Search for blocks having produced a constraint at the current time
OrderedSet(Block) blocklist := self . constraints→select(c:Constraint|c.constraintTime=self.currentTime)→collect(c:Constraint|c.author);
if (blocklist→notEmpty()){ // If blocks have produced constraints at the current time...

self . topologicalSort (blocklist , m.structure) ; // Topological sort on these blocks
self .currentBlock := blocklist→first(); // Choose the first one to update
self . constraints := self . constraints→reject(b:Block|b=self.currentBlock); // Then remove the corresponding constraint

}else{ // ... else, search for blocks that have to receive events
blocklist := self .activeEventList→collect(e:Event|e.destinationPin.isInputForBlock)
if (blocklist→notEmpty()){ // If there are blocks to update

self . topologicalSort (blocklist , m.structure) ; // Topological sort on these blocks
self .currentBlock := blocklist→first(); // And choose the first one to update

}
}}

current snapshot for the internal model of computation
from the time stamp of the external model of compu-
tation, from the time stamps of the input data, or from
any other suitable parameter.

After the input data has been adapted, the inter-
nal model of the interface block must be updated.
The startOfUpdate operation is used to take new
adapted inputs from the interface block into account,
and the endOfUpdate operation is used to provide
outputs determined during the update of the model to
the interface block. The observation of a model may
be partial (if it models a non-strict component). The
loop which computes the observation must stop when
the further operation indicates that no more outputs
can be determined according to the current state of the
model and the currently available inputs.

Then, the adaptOut operation interprets the data
produced by the internal model and translates it so that
it is meaningful to the external model. The same kinds
of transformations as used in adaptIn may be per-
formed here: change of representation, computation of
time stamps, holding data until a later snapshot, deliv-
ering default or previously produced data and so on.
An example of an adaptOut operation is shown on
Listing 2 page 7.

3.5 Implementation and validation
We have experimented our approach in a prototype of
ModHel’X based on the Eclipse EMF framework [39].
We use the ImperativeOCL [37] language, an imper-
ative extension of OCL, for describing the semantics
of the operations of our algorithm. No interpreter be-
ing available for the moment, we translate it into Java.
We have successfully implemented several MoCs, such
as Finite State Machines (FSM), Discrete Events (DE)
and *charts [20]. We are developing a library of MoCs
in order to further the validation of our approach. In
particular, we are currently working on the UML Stat-
echarts and the Synchronous Dataflow (SDF) MoCs.

The use of ImperativeOCL for specifying the seman-
tics of the operations of our algorithm is not a definitive
choice. We have observed that ImperativeOCL specifi-
cations are too verbose and do not allow the designer to
work at a suitable level of abstraction. Moreover, Im-
perativeOCL’s semantics is not well defined yet, mainly

because it includes complex object-oriented constructs
that are irrelevant to our particular application. We are
exploring other options including model transforma-
tion languages and pre/post conditions such as found
in Hoare’s logic.

4. A multi-formalism example
To illustrate our approach, and in particular the seman-
tic adaptation between a timed and an untimed MoC,
we consider as an example a simple hierarchical and
heterogeneous model of a coffee machine which works
as follows: first the users have to insert a coin, then they
have to press the “coffee” button to get their coffee after
some preparation time.

4.1 Modelling formalisms
In this model, we take into account the date of the in-
teractions between the user and the machine: insert a
coin, push a button, deliver the coffee. Therefore, we
use the Discrete Events (DE) MoC, which is imple-
mented, for example, by SimEvents (The MathWorks)
or Verilog. We represent our user by an atomic block,
whose behaviour is written in Java. We model the cof-
fee machine as an automaton (with UML Statecharts
for instance), because at this stage of the design pro-
cess, we focus on the logic of its behaviour. We con-
sider here a simple version of this MoC called FSM
(Finite State Machines), which is similar to the one pre-
sented in [22]. Fig. 5 shows the global model resulting
from the combination of the DE and FSM models. We
use here a basic graphical syntax in which models and
blocks are represented by rectangles, pins by circles
and triangles and relations by arrows. A more natural
representation of the FSM model (i.e. of the automaton
of the coffee machine) is shown on the right part of the
figure. The combination of the DE and FSM MoCs is
a classical example, which is well addressed by tools
like Ptolemy. However, we will see that it is possible
to handle the interactions between DE and FSM differ-
ently with ModHel’X.

The representation of the structure of the DE model
in ModHel’X is straightforward. The representation of
the FSM model is more involved because a transition

6

Listing 2: adaptOut operation of the interface block

CoffeeMachine::adaptOut(){
self .model.structure.pinsOut→select(pInt:Pin|pInt.storedTokens→notEmpty())
→forEach(pInt:Pin){ // Check all the output pins of the internal model

self .pinsOut→forEach(pExt:Pin){ // If FSM events have been produced by the internal model. . .
pExt.storedTokens→append(// . . . they become DE events on the outputs of the block

new DEEvent(// . . . with time stamps = last stored time stamp + serving delay
self . tLastDEevt + self.parameters→select(name="servingDelay")));

}
pInt .storedTokens→clear(); // FSM events are cleared

}}

may have two associated behaviours: the evaluation of
its guard and its action. Since blocks are the basic units
of behaviour in ModHel’X, a transition is represented
using a block for its guard linked by an action relation
to a block that performs its action, and by next relations
to the transitions that become enabled when this tran-
sition is taken (these are the transitions that leave the
target state of the transition). Therefore, in our imple-
mentation of FSM, the current state of the automaton is
represented by the set of the currently “fireable” guard
blocks. The initial state of the automaton is the set of
the initially fireable guard blocks (which contains only
the G1 block in our example).

In our implementation of DE, which is quite sim-
ilar to the implementation of DE in Ptolemy, events
are stored in a global event queue. When a snapshot
is taken, the current time is determined according to
the time stamps of the events in the queue and on
the time constraints produced by the blocks. At each
computation step, we consider the blocks that have
posted a time constraint for the current time and the
blocks that are the target of events with a time stamp
equal to the current time. The semantics of DE as-
sumes that a given block is observed only once in a
snapshot, so every block in DE must have all its in-
put events available when it is updated at a given time
stamp. However, a block is allowed to react instanta-
neously to its inputs, and to produce an event with a
time stamp equal to the current time. We must there-
fore update the blocks of a DE model in such a way
that if block B depends on some outputs from A, A
must be updated before B in case it produces an event
for B at the current time. In our implementation of
DE, we always chose to update a block which is min-
imal according to a topological sort of the blocks of
a model. Events that are delivered to their destination
block are removed from the queue. A snapshot is com-
plete only when all the events at the current time have
been processed. The events that have a time stamp cor-
responding to a future time remain in the queue for
the next snapshot. Listing 1 shows the code of the
initSchedule operation for the DE MoC, which is
in charge of choosing the block to update in the current
step, given the rules that we just mentioned. This is
the only scheduling operation for this MoC, the others
(pre, inter and postSchedule) being left empty.
The topologicalSort function is used to find a
minimal block according to the partial order induced

by the dependency relations between the blocks of the
model.

4.2 Semantic adaptation of DE and FSM
DE and FSM share the notion of event. However, FSM
has no notion of time attached to events. So, when a
DE event enters FSM, the interface block has to re-
move its time stamp to make it look like an FSM event.
When an FSM event enters DE, the interface block has
to give it the “right” time stamp. An acceptable way
to proceed is to give it the same time stamp as the
most recent incoming event (in particular, this is what
is done by Ptolemy). We provide an interaction pattern
which realizes this adaptation. However, for our cof-
fee machine, this behaviour does not model the serv-
ing delay, which is an important characteristic of the
model. Therefore, we add a ServingDelay param-
eter to the coffee machine and we modify the pattern
so that the time stamp of the served event is the sum
of the time stamp of the last coffee event and the
ServingDelay (see the code for the adaptOut op-
eration on Listing 2).

4.3 Running the example
When executing this example, the execution engine
computes three successive snapshots. The trace of the
execution sequence is summarized in Table 1. We only
show in this table the execution steps of the algorithm
that modify the different computation variables. Each
line shows the values of the variables after the execu-
tion of the corresponding execution step.

During the setup, the user block produces a con-
straint in order to be observed at time 0 (so that there
is a snapshot when it inserts the coin into the coffee
machine). This constraint triggers the first snapshot.
At the start of the snapshot, the event queue of the DE
model is empty, and the set of currently fireable guards
in the FSM model contains the G1 block. Because of
the constraint produced by the user, the current time
of the DE model is set to 0 at the first snapshot. No
other block having produced a constraint or emitted an
event yet, the user is therefore chosen for update by the
initSchedule operation during the first computa-
tion step. When updated, the user emits the coin event
with time stamp 0. A second computation step happens
because the time stamp of the coin event is equal to

7

Table 1
Execution steps when running the coffee machine example

Execution steps DE MoC InterfaceBlock FSM MoC

Event queue Constraints Last stored time stamp Current fireable
guard blocks

Setup [] [user : 0] tlastDEevt = 0 G1

First snapshot:

start of snapshot [] [user : 0] tlastDEevt = 0 G1

update of the user [coin : 0] [] tlastDEevt = 0 G1

adaptIn in the coffee machine [] [] tlastDEevt = 0 G1

update of G1 [] [] tlastDEevt = 0 G2

adaptOut in the coffee machine [] [] tlastDEevt = 0 G2

end of snapshot [] [user : tuser] tlastDEevt = 0 G2

Second snapshot:

start of snapshot [] [user : tuser] tlastDEevt = 0 G2

update of the user [coffee : tuser] [] tlastDEevt = 0 G2

adaptIn in the coffee machine [] [] tlastDEevt = tuser G2

update of G2 [] [] tlastDEevt = tuser G1

update of A2 [] [] tlastDEevt = tuser G1

adaptOut in the coffee machine [served : tuser + ∆T] [] tlastDEevt = tuser G1

end of snapshot [served : tuser + ∆T] [] tlastDEevt = tuser G1

Third snapshot:

start of snapshot [served : tuser + ∆T] [] tlastDEevt = tuser G1

update of the user [. . .] [] tlastDEevt = tuser G1

the current time of the snapshot. The coffee machine
block is chosen for update since it is the target of the
coin event. Before delegating the update to its inter-
nal model, the coffee machine InterfaceBlock executes
its adaptIn operation to remove the time stamp of the
coin event. Then the coin event is delivered to the
coin pin of the internal model. The current fireable
guard G1 is updated and consumes the coin event.
G2 becomes then the current fireable guard. Since no
event has been produced by the automaton, the execu-
tion of the adaptOut operation has no effect. The DE
event queue remains empty and the snapshot is there-
fore over. The user block produces a constraint during
the endOfSnapshot operation in order to require to
be observed at time tuser (when it presses the “coffee”
button of the coffee machine).

Because of the constraint produced by the user, a sec-
ond snapshot is triggered and the current time of DE is
then tuser. At the start of the snapshot, the event queue
of the DE model is empty, and the set of currently fire-
able guards in the FSM model contains the G2 block.
The same computation steps as in the first snapshot
happen until the coffee event, emitted by the user
with time tuser, is delivered to the coffee machine.
During the execution of the adaptIn operation, the
time stamp of the coffee event is removed and its
value is stored. Then, the event is delivered to the

coffee pin of the internal model. The currently fire-
able guard G2 is updated. G2 consumes the coffee
event, G1 becomes the current fireable guard and the
A2 action is scheduled for update. When updated, the
A2 action produces the served event and the FSM
model finishes its update. The adaptOut operation
computes the time stamp of the served event by
adding the ServingDelay value to the stored time
stamp of the last coffee event. The served event
is therefore emitted by the coffee machine with a time
stamp equal to tuser + ∆T and stored in the DE event
queue. Since this event has a time stamp in the future,
and no other event for the current time remain in the
queue, the snapshot is over.

The last snapshot happens because the served
event, which remains in the DE event queue, has to be
processed. The current time of the DE model is then
tuser + ∆T and the served event is delivered to the
user. What happens then depends on the implementa-
tion of the user block. For example, if this block repre-
sents a user who drinks coffee all day, it may produce
another coin event right away with a time stamp equal
to tuser + ∆T or to tuser + ∆T + δuser and the cycle
of snapshots may therefore continue.

8

5. Discussion

5.1 Required effort for using ModHel’X

There are two prerequisites to the use of the ModHel’X
framework. First, an expert of a modelling language
has to describe the structural and semantic elements
of this language using our meta-model and our im-
perative syntax. Since our goal is not to replace ex-
isting modelling tools but to allow their joint use in a
controlled way, this expert also defines transformations
from the original meta-model of the language to our
generic meta-model. The specification of the semantics
of a modelling language in ModHel’X is the difficult
part of the work because the semantics of modelling
tools is often known only intuitively, through the expe-
rience we have of the tools, and not formally. When no
consensus exists on the semantics of a modelling lan-
guage, this task may even be contentious. However, the
advantage of fixing the semantics to use is that no doubt
remains on the behaviour of the model, which is abso-
lutely necessary for verification, validation. It is also a
major advantage when exchanging models among sev-
eral actors of the development cycle. This first step is
done once and for all for each modelling language.

Second, for each pair of MoCs that may interact in
heterogeneous models, experts should define interac-
tion patterns, which model standard ways of combining
models that obey these MoCs. The interaction policy
actually used in a particular model will be a specializa-
tion of one of these patterns, tuned using parameters.
The design of interaction patterns depends on the tech-
nical domains at stake and on the habits of the designers
since it formalizes their know-how and their usual ways
of solving heterogeneity issues. Therefore, it is also a
difficult task. As a counterpart, it allows the modeler
to control what is happening at the border between two
heterogeneous models. It is necessary to define at least
one semantic adaptation policy for each pair of MoCs
that one intends to use together. However, there is no
need to define such a policy for any pair of MoCs, first
because there may be no sense in making some MoCs
interact, second because even when they are used to-
gether in a model of a system, some models of com-
putation never interact directly. The number of useful
combinations of MoCs is therefore much lower than the
number of combinations that are theoretically possible
for N MoCs.

5.2 Supported models of computation

Considering that a given structure of model can be in-
terpreted as an automaton or as a discrete event model
depending on the MoC which is associated to it can
seem somewhat extreme. However, this choice has
proven to be powerful since Ptolemy supports, on this
basis, paradigms as different as finite state machines,
ordinary differential equations or process networks.

In the same way, ModHel’X can support a large
range of models of computation. This includes MoCs
for continuous behaviours, which are approximated by
the computation of a series of discrete observations.
ModHel’X also supports models of computation that
allow cyclic dependencies in models. Such dependen-
cies are solved by iterating toward a fixed point, as
in the Synchronous Reactive domain of Ptolemy. The
fixed point is reached only if all blocks are monotonous
according to a partial order defined by the model of
computation. Last, even if the execution engine of
ModHel’X is deterministic (because it is designed to
compute one of the possible behaviours of a model
during an execution), non deterministic MoCs are sup-
ported but require the use of pseudo-random functions
in their specification. Such MoCs may be useful when
modelling the non deterministic environment of a sys-
tem, for instance.

5.3 Comparing ModHel’X and Ptolemy

Ptolemy was our main source of inspiration, but we
have extended it on several aspects. One of our main
contributions is the explicit specification of the interac-
tions between MoCs (see Section 3.4). Moreover, our
approach is based on the observation of blocks and not
on the triggering of actors. Thanks to this change of
paradigm and to the introduction of time constraints,
the execution of a ModHel’X model is not necessarily
driven by its root level. Finally, the definition of our
abstract syntax as a MOF meta-model allows us to rely
on model transformation tools from the MDE commu-
nity to exchange models with other tools in the design
chain.

Like Ptolemy, ModHel’X is designed to support the
widest possible range of modelling formalisms. This
implies that its generic execution algorithm is not as
efficient as a specific algorithm optimized for a given
formalism. In order to add support for the explicit spec-
ification of semantic adaptation, we have split our exe-
cution algorithm into finer-grained execution steps than
those of Ptolemy. The study of the impact this choice
may have on performance is planned as future work.

6. Related work

Because of its multi-disciplinary nature, multi-
formalism modelling has involved research teams with
technical backgrounds as different as control science,
signal processing, model checking, modelling lan-
guage engineering or system-on-chip development. In
this section, we review different approaches to multi-
formalism modelling and propose to sort them accord-
ing to three main criteria: (1) support for an open set
of modelling languages, (2) support for multiple de-
sign activities and (3) support for formal verification
of properties.

9

6.1 Support for an open set of languages

The ad-hoc combination of a finite set of modelling lan-
guages is a well addressed issue. VHDL-AMS, for ex-
ample, allows the combination of discrete events and
continuous time models. However, the development
of MDE entails the use of new modelling languages –
in particular Domain Specific Languages – thus lead-
ing to the need for more flexible tools. In this sec-
tion, we present approaches that support an open set of
modelling languages. They permit the specification of
the semantics of modelling languages in two different
ways: using meta-models and model transformation, or
using models of computation.

6.1.1 Meta-modelling and model transformation

In meta-modelling approaches such as Kermeta [22],
the abstract syntax of a modelling language is described
as a meta-model. The elements of this meta-model
have methods whose semantics is defined in an impera-
tive language. Each modelling language has a different
meta-model in Kermeta. In the context of heteroge-
neous modelling, the definition of the combination of
several modelling languages using such approaches im-
plies either the definition of a meta-model which is the
union of all the meta-models of the involved languages,
or the definition of transformations from each meta-
model to a meta-model chosen among them. Defining
a union meta-model seems neither reasonable nor scal-
able since it implies the modification of the meta-model
and of the associated model transformations each time
an additional modelling language is taken into consid-
eration. The second method is much more interesting
since it is more flexible: the target meta-model can be
chosen according to the question that must be answered
about the system. Such an approach is implemented in
the ATOM3 tool [23]. However, the way the different
heterogeneous parts of the model are “glued” together
does not seem to be addressed by this approach.

Other approaches [24, 6] are also based on model
transformation. In particular, [6] states that it is pos-
sible to formally define the semantics of a modelling
language by defining a mapping to an already formally
defined modelling language.

6.1.2 Models of computation

Another approach for defining the semantics of a mod-
elling language is to define the constructs of the lan-
guage in a fixed abstract syntax – or meta-model –
which is component oriented (as in [31]), and to con-
sider that the semantics of the language is given by its
“Model of Computation” (MoC). Such an approach is
implemented in Ptolemy [4] and in ModHel’X.

The “42” approach [26], which is also based on the
notion of model of computation, relies on the syn-
chronous paradigm. 42 generates the code of the MoCs

(called “controllers”) from the contracts of the compo-
nents (described using automata), the relations between
their ports and additional information related to activa-
tion scheduling. The strength of this approach resides
in the description of the behavioural contract of com-
ponents. However, such a description may not be avail-
able (in the case of an external IP – Intellectual Property
– for instance) or may not be easy to establish, in the
case of continuous time behaviours for example.

6.2 Support for multiple design activities

As they support different design activities, the ap-
proaches that we introduce in this section are able to
assist the designers along different phases of the devel-
opment cycle. This is a key benefit when the number of
design tools tends to increase dramatically.

In [19], the authors propose an approach to multi-
formalism modelling which is oriented toward state-
space analysis. The approach relies on an “inframodel”
which captures only the aspects of a formalism that
are essential for state-space exploration and supports
customization for reflecting the particular semantics of
each formalism. Hypergraphs are used for represent-
ing models. This approach supports a wide range of
model analysis techniques, from reachability analysis
to model execution. However, it seems that the sup-
ported formalisms are limited to state transition for-
malisms for concurrent systems.

Similarly to the approaches of Section 6.1.2,
Metropolis [7] relies on the concept of model of com-
putation, but it focuses on MoCs related to process net-
works. In Metropolis, the modelling of the function
is separated from the modelling of the architecture. A
mapping mechanism is provided to produce platform
specific models. Metropolis includes tools for verifica-
tion, simulation and synthesis.

6.3 Support for formal properties

In this last section, we present two approaches that al-
low reasoning about the formal properties of heteroge-
neous models. Since they target the verification and
validation phases of the development cycle, these ap-
proaches are of particular interest when designing crit-
ical software.

BIP (Behaviour, Interaction, Priority) [25] takes ad-
vantage of a hierarchical and component oriented ab-
stract syntax and provides formally defined mecha-
nisms for describing combinations of components in a
model using heterogeneous interactions. BIP does not
consider components as black boxes and has access to
the description of their behaviour. This allows the for-
mal verification of properties on the model.

Rosetta [30] is a system specification language with
a formal semantics. It introduces the notion of “facet”,
which models a particular aspect of a component, e.g.
its behaviour or its energy consumption. Rosetta al-

10

lows the combination of models of computation either
in order to assemble components or to model different
aspects of one component. Therefore, it provides the
designer with the ability to combine multiple views of
parts of the system.

7. Conclusion
After an overview of the main issues in multi-
formalism modelling for model execution, we have
presented an approach that (a) provides support for
the specification of the semantics of a modelling for-
malism through the concept of model of computation,
and (b) allows the definition of the interactions be-
tween heterogeneous parts of a model through a special
modelling construct and using an imperative syntax.
This approach relies on the black-box and the snapshot
paradigms to compute the observable behaviour of a
model by combining the behaviours observed at the in-
terface of its components. A generic MOF meta-model
for representing the structure of hierarchical heteroge-
neous models has been proposed. On this basis, models
of computation are described by giving a specific se-
mantics to the operations of a generic algorithm which
computes series of snapshots of models which conform
to the proposed meta-model.

We are currently developing the MoC library of our
prototype in order to further the validation of our ap-
proach. The rigid structure of the execution algorithm
of ModHel’X is a first step toward the definition of
MoCs in a fixed frame with formal semantics. How-
ever, for the moment, our imperative syntax is still
too close to Java to have formal semantics. There-
fore, ModHel’X cannot be used for model-checking or
demonstrating properties. We are currently studying
several possibilities for replacing ImperativeOCL with
a more concise and formal language. Moreover, we are
considering the use of a formal framework for founding
the semantics of our execution algorithm.

References

Journal Papers
[1] A. Mbobi, F. Boulanger, and M. Feredj, “An approach

of flat heterogeneous modeling based on heterogeneous
interface components,” International Review on Com-
puters and Software, vol. 2, pp. 179–189, March 2007.

[2] M. Feredj, F. Boulanger, and A. Mbobi, “A model of
domain-polymorph component for heterogeneous sys-
tem design,” Journal of Systems and Software, vol. 82,
no. 1, pp. 112–120, 2009.

[3] P. J. Mosterman and H. Vangheluwe, “Computer au-
tomated multi-paradigm modeling: An introduction,”
Simulation, vol. 80, no. 9, pp. 433–450, 2004. Special
Issue: Grand Challenges for Modeling and Simulation.

[4] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Lud-
vig, S. Neuendorffer, S. Sachs, and Y. Xiong, “Taming

heterogeneity – the Ptolemy approach,” Proceedings of
the IEEE, Special Issue on Modeling and Design of Em-
bedded Software, vol. 91, pp. 127–144, January 2003.

[5] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivan, c Kumar,
I. Lee, P. Mishra, G. Pappas, and O. Sokolsky, “Hierar-
chical modeling and analysis of embedded systems,” in
Proceedings of the IEEE, october 2002.

[6] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle, “On the
use of graph transformations for the formal specifica-
tion of model interpreters,” Journal of Universal Com-
puter Science, Special issue on Formal Specification of
CBS, vol. 9, no. 11, pp. 1296–1321, 2003.

[7] F. Balarin, L. Lavagno, C. Passerone, A. L. S. Vincen-
telli, M. Sgroi, and Y. Watanabe, “Modeling and design-
ing heterogeneous systems,” Advances in Concurrency
and System Design, 2002.

[8] G. Berry and G. Gonthier, “The esterel synchronous
programming language: Design, semantics, implemen-
tation,” Science Of Computer Programming, vol. 19,
no. 2, pp. 87–152, 1992.

[9] C. A. R. Hoare, “Communicating sequential processes,”
Commun. ACM., vol. 21, no. 8, pp. 666–677, 1978.

[10] E. A. Lee and A. L. Sangiovanni-Vincentelli, “A frame-
work for comparing models of computation,” IEEE
Trans. on CAD of Integrated Circuits and Systems,
vol. 17, no. 12, pp. 1217–1229, 1998.

[11] K. M. Chandy and L. Lamport, “Distributed snapshots:
Determining global states of distributed systems,” ACM
Transactions on Computer Systems, vol. 3, pp. 63–75,
february 1985.

[12] E. A. Lee and D. G. Messerschmitt, “Synchronous data
flow,” Proceedings of the IEEE, vol. 75, pp. 1235–1245,
september 1987.

[13] A. Jantsch and I. Sander, “Models of computation and
languages for embedded system design,” IEE Proceed-
ings on Computers and Digital Techniques, vol. 152,
pp. 114–129, march 2005. Special issue on Embedded
Microelectronic Systems.

[14] D. Lugato, C. Bigot, Y. Valot, J.-P. Gallois, S. Gérard,
and F. Terrier, “Validation and automatic test generation
on uml models : the agatha approach,” Software Tools
for Technology Transfer, vol. 5, pp. 124–139, march
2004.

Books
[15] G. T. Heineman and W. T. Councill, eds., Component-

Based Software Engineering. ACM Press, Addison-
Wesley Professional, New-York, NY, USA, 2001.

[16] T. Clark, A. Evans, P. Sammut, and J. Willans, Applied
metamodelling: A foundation for language driven de-
velopment. Xactium Ltd., Sheffield, UK, 2004.

[17] G. Tel, Introduction to Distributed Algorithms, 2nd edi-
tion. Cambridge University Press, Cambridge, UK,
2000.

[18] B. Meyer, Introduction to the Theory of Programming
Languages. Prentice Hall, Hemel Hempstead, UK,
1990.

11

Proceedings Papers
[19] M. Pezzè and M. Young, “Generation of multi-

formalism state-space analysis tools,” in Proceedings of
the 1996 International Symposium on Software Testing
and Aanalysis, pp. 172–179, ACM, New-York, 1996.

[20] C. Hardebolle, F. Boulanger, D. Marcadet, and
G. Vidal-Naquet, “A generic execution framework for
models of computation,” in Proceedings of MOMPES
2007, at ETAPS 2007, pp. 45–54, IEEE Computer So-
ciety, Los Alamitos, CA, USA, March 2007.

[21] T. A. Henzinger and J. Sifakis, “The embedded sys-
tems design challenge,” in Proceedings of the 14th In-
ternational Symposium on Formal Methods (FM), Lec-
ture Notes in Computer Science, pp. 1–15, Springer
Berlin/Heidelberg, August 2006.

[22] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel, “Weav-
ing executability into object-oriented meta-languages,”
in Proceedings of MODELS/UML 2005, pp. 264–278,
Springer Berlin/Heidelberg, 2005.

[23] J. de Lara and H. Vangheluwe, “ATOM3: A tool
for multi-formalism modelling and meta-modelling,”
in Proceedings of FASE 2002, pp. 174–188, Springer-
Verlag, London UK, april 2002.

[24] T. Levendovszky, L. Lengyel, and H. Charaf, “Software
Composition with a Multipurpose Modeling and Model
Transformation Framework,” in IASTED on SE, (Inns-
bruck, Austria), pp. 590–594, February 2004.

[25] A. Basu, M. Bozga, and J. Sifakis, “Modeling heteroge-
neous real-time components in BIP,” in Proceedings of
SEFM06, pp. 3–12, IEEE Computer Society Washing-
ton, DC, USA, september 2006.

[26] F. Maraninchi and T. Bouhadiba, “42: Programmable
models of computation for a component-based ap-
proach to heterogeneous embedded systems,” in Pro-
ceedings of GPCE’07, pp. 53–62, ACM New York, NY,
USA, october 2007.

[27] P. Fritzson and V. Engelson, “Modelica — A uni-
fied object-oriented language for system modeling and
simulation,” in Proceedings of ECOOP98, pp. 67–90,
Springer-Verlag, London, UK, july 1998.

[28] A. Benveniste, B. Caillaud, L. P. Carloni, and A. L.
Sangiovanni-Vincentelli, “Tag machines,” in Proceed-
ings of EMSOFT 2005, pp. 255–263, ACM New-York,
NY, USA, September 2005.

[29] J. R. Burch, R. Passerone, and A. L. Sangiovanni-
Vincentelli, “Overcoming heterophobia: Modeling con-
currency in heterogeneous systems,” in Proceedings of
the second International Conference on Application of
Concurrency to System Design, p. 13, IEEE Computer
Society, Washington, DC, USA, June 2001.

[30] C. Kong and P. Alexander, “The Rosetta meta-model
framework,” in Proceedings of ECBS’03, pp. 133–140,
IEEE Computer Society, Los Alamitos, CA, USA, April
2003.

Miscellaneous
[31] E. Bruneton, T. Coupaye, and J. Stefani, “The fractal

component model specification,” Feb. 2004.

[32] J. Liu, “Continuous time and mixed-signal simulation in
Ptolemy II,” tech. rep., EECS Department, University of
California, Berkeley, 1998.

[33] B. Lee, “Specification and design of reactive sys-
tems,” Tech. Rep. UCB/ERL M00/29, EECS Depart-
ment, Univ. of California, Berkeley, 2000.

[34] OMG, “UML profile for Modeling and Analysis of
Real-Time and Embedded systems (MARTE) RFP,”
february 2005.

[35] L. Muliadi, “Discrete event modeling in Ptolemy II,”
Tech. Rep. UCB/ERL M99/29, EECS Department,
Univ. of California, Berkeley, May 1999.

[36] OMG, “Object Constraint Language specification, ver-
sion 2.0,” May 2006.

[37] OMG, “Meta Object Facility 2.0 Query-View-
Transform specification,” Nov. 2005.

[38] OMG, “Unified Modeling Language: Infrastructure –
version 2.1.1,” January 2007.

[39] Eclipse Foundation, “Eclipse Modeling Framework
(EMF).”

[40] ATLAS group (INRIA – LINA), “ATLAS Transforma-
tion Language (ATL).”

[41] Commissariat à l’Énergie Atomique, “Papyrus UML
Modeler.”

Biographies
Frédéric Boulanger is a professor
at the Computer Science Depart-
ment of Supélec. He got is en-
gineering degree from Supélec in
1989, and a PhD in Computer Sci-
ence from Paris-Sud XI Univer-
sity in 1993. He is interested in
the design and validation of het-
erogeneous systems.

Cécile Hardebolle is a PhD stu-
dent at the Computer Science De-
partment of Supélec. She got her
engineering degree from Supélec
in 2004. Started in January 2006,
her thesis relates to heterogeneous
modelling, the execution of mod-
els and meta-modelling.

12

