

CimClipse Bringing MDE to CIM

CIMug meeting
Dominique.Marcadet@supelec.fr

Background

- Professor and researcher in computer science at Supélec
- Collaboration with EDF on CIM since 2002

- OC++ framework for working with CIM objects
- Used for converters between CIMXML files and other formats
- Also, CimViewer, a tool written in Java to visualize CIMXML files

- The Model Driven Engineering (MDE) is a (not so) new way to build software focusing on models instead of algorithms and code
- The CIM is a model
- Eclipse is an open source environment offering the broader set of tools for MDE

- Abstraction
 - Offer higher level concepts
 - OHide implementation details
 - Unify concepts before going to code, data, file format...
- Durability
 - Are more stable than programs
 - Can be more easily adapted to new technologies

The OMG modeling stack

CIM in the modeling stack

- CIM as a UML model
 - Generate models/code/data
 - Compare CIM models
- CIM as a language
 - CIM got a promotion, it is now an Ecore model (a DSML)
 - Networks are models
 - Networks can be manipulated with Eclipse/MDE tools

CIM

networks

The meta-meta-model is Ecore (M3 layer)

UML is available as an M2 layer

 Ecore Modeling Framework (EMF) is the base framework for building MDE tools, it unifies Java, UML and XML

MDE tools in Eclipse

- EMF
 - Java API for model manipulation
 - XML (de)serialisation
 - Comparison
 - Query and transaction
 - Validation
 - Storage, sharing
- Other projects
 - Model-to-Model transformation (M2M)
 - Model-to-Text transformation (M2T)
 - Graphical model edition
 - O ...

- CimClipse is an umbrella name for tools:
 - Oused within or based on Eclipse or its plugins
 - Oused for CIM related tasks
 - Oreleased as Open Source

http://wwwdi.supelec.fr/software/cimclipse/

- CIM models as Eclipse/UML2 models
 - Omanual modifications on EA XMI exports
- CIM models as Ecore models
 - OM2M (with ATL) transformation
- OCL Validator to validate a CIMXML file against a set of constraints written in OCL

- Object Constraint Language is a textual language used to formally specify properties (invariants)
- It can be used at the M1 level to be applied on M0 artifacts
- It can also be used at the M2 level to be applied on M1 models

- OCL is easy to read/write:
 - OWL:

```
<rdf:Description rdf:nodeID= "..." >
    <owl:minCardinality rdf:datatype="http://www.w3.org/...#int">1</owl:minCardinality>
    <owl:onProperty rdf:resource="http://iec.ch/...cim14#TapChanger.highStep"/>
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Restriction"/>
</rdf:Description>
```

OCL:

```
context TapChanger inv:
  self.highStep->size() >= 1
```

Values of attributes can be checked

```
context IdentifiedObject inv name_rule:
    self.name.size() <= 32</pre>
```

- OCL works at the model level:
 - Associations are bidirectional

```
context Terminal inv connected_terminal:
    self.ConnectivityNode->size() = 1
```

```
context ConnectivityNode inv isolated_node:
   self.Terminals->size() >= 2
```

• Inheritance is known

```
context ACLineSegment inv:
    self.EquipmentContainer.oclIsTypeOf(Line)
```


- The profile is not the model
- The model:
 - Every ConductingEquipment has 0 or more Terminals
- The profile:
 - OAn ACLineSegment has 2 Terminals

- A file must be valid for the model, may be valid for the profile
- The tool to check the validity against a model must be distinct from the one to check for the validity against the profile
- CimClipse:
 - Standard EMF load engine to check against the model
 - OCL constraints to check against the profile