
Axiomatic semantics of time and causality models in TESL

Preliminary Research Report

July 17, 2015

Contents

1 Mathematical background 1
1.1 Sets, products and Kleene stars . 1
1.2 Domains, recursion and fixpoints . 1

2 Defining time in TESL 2

3 Correctness properties of runs 3
3.1 Clocks, ticks and run consistency . 3
3.2 Implications . 4
3.3 Tags and time scales . 4
3.4 Filtered implication . 4
3.5 Delayed implication . 4
3.6 Sustained implication . 5
3.7 When implication . 5
3.8 Await implication . 5
3.9 Time delayed implication . 6

4 Example 6
4.1 Example 1 : a tag relation and a Unit clock . 6
4.2 Example 2 : created ticks and shifted tags . 7

5 Appendix 1 : Frontend for the TESL syntactic part 7

6 Appendix 2 : Embedding approximation in TESL tag relations 8

1 Mathematical background

We give hereafter some useful mathematical notations for the reader and shall assume that she or he is familiar
to set and recursion theory. That is, N, Z, Q and D will denote usual sets in mathematics. In particular,
U = {?} is the unit set which contains exactly one element and F is the set of floating-point numbers as defined
in IEEE 754.

1.1 Sets, products and Kleene stars

Let S be a set. We denote Pf (S) as the finite superset of S and yet Sn as the n-time cartesian product of S.
In particular, its objects will be called tuples over S and denoted as (u0, . . . , un−1). Moreover, a sequence over
S is an arrow N → S and is denoted as (ui)i∈N. Finally, a word over S is an object of the Kleene closure S?

which be can be defined as follows

S? =
⋃
i∈N

Si

We will adopt the small assumption that tuples, sequences and words can be mixed up to isomophisms and
will suggest the following common notations.

The k-component projection of a sequence u is written uk or u[k]. The prefix of length k of the word u is
u<k or (ui)i<k. The suffix starting at the k-th component of u is u≥k or (ui)i≥k.

Furthermore, a subsequence (or subword) of u is a sequence v such that there exists a non-decreasing arrow
φ : N → N satisfying vk = uφ(k) (where N ∈ P(N)). We insist on the fact that this is a general case from a
factor y of u when there exists x, z such that u = x · y · z.

1

Let R be a binary relation and S a set. We denote R|S as the restriction of R over domain S, i.e. R|S =
{〈x, y〉 : x ∈ S and x R y}. When x is an object of S, then we abbreviate Rx as R{x}. In the end, we denote
the following, R0 as the reflexive closure, R+ as the transitive closure and R∗ as the reflexive-transitive closure.

1.2 Domains, recursion and fixpoints

In recursion theory, let S, S′ be two sets. The set of partial recursive functions is S ⇀ S′, yet the set of total
functions is S → S′. Let f : S ⇀ S′ be a partial recursive function. We shall note f(x) ↗ if the result
of the calculation is undefined and f(x) ↘ if it is defined. Furthermore, the Kleene’s µ-operator (also called
minimization operator) is defined as

µx.
[
P (x)

]
= inf

{
x ∈ N : P (x)

}
if ∃x P (x)

Finally, we will need some fixpoint theory. Let (X,v,t,u,⊥,>) be a complete lattice. Recall the following
notations

fp(f) =
{
x ∈ X : f(x) = x

}
lfpx f = minvX

{
y ∈ fp(f) : x vX y

}
if exists

lfp f = lfp⊥ f

The usage of least fixpoint operators is restricted to specific algebraic structures called lattices. The following
is a very fundamental fixpoint theorem which gives the existence and ability to construct the fixpoint of a function
by successive iterations of the function

Theorem 1. [Tarski (1955), Kleene (1938)] If f : X → X is continuous in a complete partial order X and ⊥
is the least element of X then lfp f exists and can be computed as

lfp f = sup
{
fn(⊥) : n ∈ N

}
2 Defining time in TESL

At most, we will stick to the following letters and fonts to give some intuitions for the reader.

clocks c, c1, c2, . . .
tags τ, τ ck
tick indexes k
ticks 〈c, k〉
instant ranks r
instants I0, I1, . . . , Ir
runs (I)
ticking predicate (local) ↑ck
ticking predicate (global) ⇑cr
time structures I
TESL specifications Φ

We give some hints about the entities that will be defined further.

clock A clock c ∈ C is an event (i.e. a set of possible occurrences of event). Its time domain — denoted as
dom(c) ∈ {U,Z,D,Q,F} — stands for a set of tags that event occurrences can be stamped with ;

tick The occurrence of an event of clock c is a tick at the k-th index described a 2-tuple 〈c, k〉 ∈ C × N. Such
clock c is said to be ticking at local index k if predicate ↑ck holds ;

tag The tag of a tick on clock c at index k is given by the partial function1 (tagc)c : C → N ⇀ dom(c) and
abbreviated (wlog in the case of time structures at runtime) as τ ck ;

instant An instant Ir ∈ Pf (C × N) (fixed rank r) is a set of clock ticks ;

run A run (Ir)r∈N : N→ Pf (C × N) is a discrete sequence of countable and possibly infinite instants ;

1This partial function can also be considered to have C×N as domain and dom(c) as codomain by decurryfication. In particular,
the domain in question can be restricted to an inductive set ticksΦ as given in Appendix.

2

Notice that the occurence of a tick on clock c at index k is purely equivalent to the fact that there exists a
tag that stamps on clock c at index k. That is to say,

↑ck holds if and only if τ ck ↘

We can notice that ticks are stamped with two entities : the clock in which it is ticking and the local index
on the latter. On the other hand, instants are stamped with global rank which indicates how time can progress.

We finally define two structures upon which we will construct a correctness assessment property in the next
sections

1. A time structure I is a tuple

〈(tagcI)c∈C , (Ir)r∈N〉

where the arrow (tagcI)c∈C : C → N ⇀ dom(c) maps a tick (i.e. a clock-stamped local index) to its tag
and (I) is a run.

2. A TESL specification Φ is a tuple

〈CΦ, domΦ, (tagcΦ)c∈C ,Rt,Rc〉

where CΦ is a set of clocks, domΦ(c) is the time domain of clock c, the arrow (tagcΦ)c∈C : C → N⇀ dom(c)
maps a tick to its tag, Rt is the set of tag relations and Rc the set of causality relations.

3 Correctness properties of runs

Let Φ be a TESL specification. The correctness property of a TESL run depends on a TESL specification. For
instance, it would be possible to rephrase the correctness assessment problem into a model-checking problem
by considering that a time structure I has to satisfy a specification Φ

I |= Φ

As a matter of fact, the TESL solver answers a more general problem which is the TESL-satisfiability
problem by returning a run that satisfies the specification (i.e. a model such that the logic holds) but under
the strict condition that each (generated or not) tick has a deterministic computable tag.

We are interested in giving a correctness assessment predicate for any time structure. Such property can be
given by the conjunction of the properties shown in the next subsections.

Assume I = 〈. . . 〉 is a time structure and 〈. . . 〉 a TESL specification. We introduce a small and convenient
notation that means that clock c is ticking at global runtime rank r (whether specifying the tick local index or
not)

⇑〈c,k〉r if and only if (c, k) ∈ Ir
⇑cr if and only if ∃k (c, k) ∈ Ir

3.1 Clocks, ticks and run consistency

As seen right above, the tag arrow of a clock is defined seperately whether specification or runtime. Indeed, the
specification gives a constraint about a minimal quantity of ticks. Thus, a time structure has to contain all of
ticks that are specified but perhaps even more when additional ticks are generated by the solver.

We first check that clocks and their domains are preserved

CI = CΦ (1)

domI = domΦ (2)

Then, we check that ticks are preserved at runtime when only specified as sporadic or periodic,

∀c ∈ C ∀k tagcΦ(k)↘ implies tagcI(k)↘ (3)

It is not enough to check that runtime contains enough ticks as specified. We also need to check that tags
are correctly and increasingly scattered. Indeed, tags that were previously stamped to ticks at specification
may be shifted or even scattered at runtime when additional ticks are generated or stuttered (see example in
Section 4.2). Hence,

∀c ∈ C ∃N =
[
0 ; |dom (tagcΦ) |

]
∃S : N → N non-decreasing tagcI

(
S(k)

)
= tagcΦ(k) (4)

3

Remark 1. In such case, if there exists N ⊆ N such that S = Id|N then no additional ticks have been generated
between specification and runtime.

Then, we need to state that ticks at runtime are necessarily and sufficiently covered by/distributed over
instant sequences. That is, instants stand for a disjoint partitions of the set of ticks,

∀c ∀〈c, k〉 ∈ ticksI(c) ∃!r ⇑〈c,k〉r (5)

Moreover, we check that a clock ticking in a instant has only one very unique tick occurence

∀r ∀〈c, k〉, 〈c, k′〉
[
⇑〈c,k〉r and ⇑〈c,k

′〉
r

]
implies k = k′ (6)

We also check that precedence relations between local indexes and global ranks are preserved in both ways.
That is

∀r, s ∀〈c, k〉, 〈c, k′〉
[
⇑〈c,k〉r and ⇑〈c,k

′〉
s and r ≤ s

]
if and only if k ≤ k′ (7)

Lemma 1. Progressing in global rank leaves no hole during progress of local indexes

∀r ∀〈c, k〉 ⇑〈c,k〉r implies µk′k′>k.
[
∃r′ > r. ⇑〈c,k

′〉
r′

]
= k + 1 (8)

Proof. Draft. Instants partitioning property. Order preservation by distribution over instants.

Lemma 2. Let c ∈ C be a clock. The arrow tagc : N→ dom(c) is monotonic.

3.2 Implications

Consider the following clock implication

c1 implies c2

The correctness predicate can be stated as

∀r ⇑c1r ⇒ ⇑c2r (9)

We need to check that when c1 ticks then c2 also has to tick at the very same instant Ir.

3.3 Tags and time scales

To proceed with tags relations which allow to synchronize ticks and give a time-triggered behavior, specification
gives a set of pair (d, r) such that

d ◦ r ◦ d = d

r ◦ d ◦ r = r

We define a partial matrix of tag relations where two functions d and r are given such that each

Rc1,c2(τ1, τ2) = dc1,c2(τ1) = τ2 or rc1,c2(τ2) = τ1

≡c1,c2 (τ1, τ2) =

τ1 = τ2 if c1 = c2

(Rc1,c2)+ if dc1,c2 and rc1,c2 exists in Rt

true otherwise

The correctness property for tag relations is

∀r ∀〈k1, c1〉, 〈k2, c2〉 ∈ Ir
[
⇑〈k1,c1〉r and ⇑〈k2,c2〉r

]
implies τ c1k1 ≡c1,c2 τ c1k1 (10)

Tag relations give constraints on the way ticks are distributed over instants. In particular, we need to check
that every tag of ticks satisfy a coincidence relation ≡c1,c2 that is either equality = when same clocks, either the
relation R (specified in Φ) or its approximate “inverse” both transitive-closed, either true when no constraint
matches with clocks in question.

4

3.4 Filtered implication

Consider the following filtered implication

c1 filtered by s, k (rs, rk)? implies c2

We additionally define a unary predicate over instant ranks to specify the filter predicate as

filter(x) =
[
falses truek (falsers truerk)ω

]
[x]

≡ s ≤ x < s+ k or ∃n ≥ 0 s+ k + n(rs + rk) + rs ≤ x < s+ k + (n+ 1)(rs + rk)

Finally, we check that

∀r s.t. filter(r) holds ⇑c1r ⇒ ⇑c2r (11)

The filtered implication works the same way as the implication but considers only a part of ticks described
by a pattern. The pattern in question is described by predicate filter which decides if it is necessary to filter or
not at a specific rank r.

3.5 Delayed implication

Consider the following delayed implication

c1 delayed by δ on c2 implies c3

We first define an extraction operator which maps a natural integer n into the rank of n-th occurence of a
tick on a given clock

X(I)
c (n) =

µx.
[
⇑cx
]

if n = 0

µx.
[
⇑cx and x > X

(I)
c (n− 1)

]
otherwise

The correctness property for delayed implications can be stated as

∀r ⇑c1r ∀r′ > r r′ = XI>r
c2

(
δ − 1

)
+ r + 1 and ⇑c3r′ (12)

In particular, this property needs the µ-operator as it is necessary to count the number of delayed ticks.
This is handled by function XI

c which catches the next rank when c ticks on run I and jumps to the other one
with minimization operator µ.

Concerning the variant with the immediate modality, we have

∀r ⇑c1r ∀r′ > r r′ = X
I≥r
c2

(
δ − 1

)
+ r and ⇑c3r′

3.6 Sustained implication

Consider the following sustained implication

cmaster sustained from cbegin to cend implies cslave

We state the correctness property as

∀r1 ⇑beginr1 ∀r2 = µxr1<x≤+∞.
[
⇑endx

]
∀r1 ≤ r ≤ r2 ⇑master

r ⇒ ⇑slaver (13)

In this case, we need to look for the instant rank when cend ticks that is strictly greater that the one when
cbegin ticks to know the interval in which the implication holds. This is done with the minimization operator.
Then one just needs to check causalities inside that interval [r1; r2].

3.7 When implication

Consider the following sustained implication

c1 when c2 implies c3

The correctness property is

∀r
[
⇑c1r and ⇑c2r

]
⇒ ⇑c3r (14)

The when implication can be associated to a logical ∧ in propositional logic. Hence, the correctness property
only needs to add another assumption on clock c2 to hold.

5

3.8 Await implication

Consider the following await implication

await c1 c2 . . . cn implies cslave

We first define an extraction operator A which maps a natural integer into the greatest mininal rank where
all clocks in set C have ticked at least once and the slave clock is supposed to tick. We can notice that this
extractor uses µ over each clocks to fetch the soonest tick, then the sup keeps the latest to state when the slave
clock is supposed to tick. Afterall, the next object of the sequence jumps after the previous and keeps running
this way

AC(n) =

sup
{
µx.
[
⇑cx
]

: c ∈ C
}

if n = 0

sup
{
µx.
[
⇑cx and x > AC(n− 1)

]
: c ∈ C

}
otherwise

We can now define the correctness predicate as

∀x ≥ 0 ∃r = A{c1,...,cn}(x) ⇑slaver (15)

In this case, we need to mix the µ-operator with the supremum as we need to construct minimal successive
partitions where all clocks in C ticked at least once. Then AC catches this partition and returns the highest
rank where last clock has ticked to allow the release of the await deadlock.

3.9 Time delayed implication

Consider the following time delayed implication

cmaster time delayed by δt on cmeasuring implies cslave

In this case and contrary to above, we will need to keep the clock local index as we will be reasoning on
tags. Correctness can be expressed as

∀r ∃k ⇑〈master,k〉
r ∃r′ > r ∃k′ ⇑〈slave,k

′〉
r′ such that τ slavek′ = τmaster

k + δt (16)

4 Example

4.1 Example 1 : a tag relation and a Unit clock

int-clock m sporadic 1, 2, 4

int-clock s1 sporadic 1, 2, 3, 4

unit-clock s2

tag relation m = s1

m implies s1

m implies s2

There exists a run that satisfies the specification above returned by the TESL solver and given by

6

That is to say, this run can be described by the following equations.
The set of clocks is

C = {m, s1, s2}

The sets of ticks at specification and runtime are different as stated below

ticksΦ = {m} × {0; 1; 2} ∪ {s1} × {0; 1; 2; 3}
ticksI = {m} × {0; 1; 2} ∪ {s1} × {0; 1; 2; 3} ∪ {s2} × {0; 1; 2}

Ticks still keep the same tags as deployed in specification (no shift). New tags are added upon them and
stamp ticks as

tagmI (0) = τm0 = 1

τm1 = 2

τm2 = 4

. . .

τs20 = ?

. . .

Finally, the run can be described as the sequence (In)

I0 = {〈m, 0〉, 〈s1, 0〉, 〈s2, 0〉}
I1 = {〈m, 1〉, 〈s1, 1〉, 〈s2, 1〉}
I2 = {〈s, 2〉}
I3 = {〈m, 2〉, 〈s, 3〉, 〈s, 2〉}

In≥4 = ∅

4.2 Example 2 : created ticks and shifted tags

int-clock m sporadic 1, 2, 3

int-clock s sporadic 2

tag relation m = s

m implies s

Notice that at specification time, clock s had only one tick called 〈s, 0〉 and its tag was tagsφ(0) = 2. In this
case, the solver has to satisfy the identity tag relation between m and s and thus is constrained to create two
ticks 〈s, 1〉 and 〈s, 2〉. It appears that tags that were previously assigned to ticks are now shifted and a new tag
deployment is generated by the solver.

In particular, the solver returns the following time structure

7

Hence, the new tag deployment for clock s is (tags for m remain unchanged)

tagsI(0) = 1

tagsI(1) = 2

tagsI(2) = 3

Now, tick 〈s, 1〉 has tag 2, instead of 〈s, 0〉 as seen above at specification time. This behavior is checked and
validated by equation (3).

5 Appendix 1 : Frontend for the TESL syntactic part

Let � ∈ {U,Z,D,Q,F} be a set symbol. We denote operations +� and ×� that allow time domain 〈�,+�,×�〉
to be a ring. The set of ticks ticksΦ defined at specification is inductively defined as follows,

1. if �-clock c ∈ Φ,

ticksΦ|c = ∅

2. if �-clock c sporadic τ1, . . . , τn ∈ Φ,

ticksΦ|c =
{
〈c, 0〉, 〈c, 1〉, . . . , 〈c, n〉

}
∀1 ≤ k ≤ n tagcΦ(k) = τk

3. if �-clock c periodic a offset b ∈ Φ,

ticksΦ|c =
{
〈c, k〉 : k ∈ N

}
∀k ∈ N tagcΦ(k) = a×� k +� b

6 Appendix 2 : Embedding approximation in TESL tag relations

Checking tag relations need to consider and understand ring structures. In particular, for any tag relation of
the kind tag relation c1 = a ×� c2 +� b, the relation constrains ticks of the very same instant to satisfy the
following constraint or its “inverse”

d : dom(c1) → dom(c2)

x 7→ a×� x+� b

8

	Mathematical background
	Sets, products and Kleene stars
	Domains, recursion and fixpoints

	Defining time in TESL
	Correctness properties of runs
	Clocks, ticks and run consistency
	Implications
	Tags and time scales
	Filtered implication
	Delayed implication
	Sustained implication
	When implication
	Await implication
	Time delayed implication

	Example
	Example 1 : a tag relation and a Unit clock
	Example 2 : created ticks and shifted tags

	Appendix 1 : Frontend for the TESL syntactic part
	Appendix 2 : Embedding approximation in TESL tag relations

